
Securing Your
CI/CD Pipelines

© 2023 Scribe Security LTD | Confidential

A USE CASE OF USING SCRIBE TRUST HUB

TABLE OF CONTENTS

2© 2023 Scribe Security LTD | Confidential |

PAGE 3 Background

PAGE 5 Scribe’s Approach to Securing the Supply Chain

PAGE 7 Scribe Solution on the Attackers Map

Initial Access
Execution

PAGE 8 Attack Scenarios Handled by Scribe Security Technologies

BACKGROUND

Device

Software-supply-chain attacks are on the rise
and the need to respond to this attack vector
has become crucial. But from where to start?

If we had the attacker’s war-map, we could
prioritize our efforts accordingly. We do not

have a specific-attacker war-map, but we do
have a blueprint of typical attacker war-maps -
the CI\CD threat matrix based on MITRE att&ck
framework:

3© 2023 Scribe Security LTD | Confidential |

CI CD

Build/Test DeployGit Repository
(Source Code)

Approved

Approver

Secret
Manager

Production
environment

Secret
Manager

Reading the table from left to right leads us
through the attack cycle - the attacker needs to
gain initial access, then to execute his code,
reach persistence, build up his capabilities by
privilege escalation, defense evasion, and
credential access. Using these capabilities he
can perform lateral movement in order to reach
his prey, and then attack - either exfiltrate or
cause other impact.

Each column of the table lists techniques the
attacker may use. For example, the first column
suggests that initial access could be gained by
either a prior compromise of the CI\CD, or by
weak access controls (valid account of a Git
service, valid account of a CI\CD service, or
valid admin account of a critical server).

4© 2023 Scribe Security LTD | Confidential |

Source

Initial Access Execution Persistence
Privilege
Escalation

Defence
Evasion

Credential
Access

Lateral
Movement Exfiltration Impact

Supply Chain
Compromise on
CI/CD

Modify CI/CD
Configuration

Compromise
CI/CD Server

Get credential
for Deployment
(CD) on CI stage

Add Approver
using Admin
permission

Dumping Env
Variables in
CI/CD

Exploitation of
Remote
Services

Exfiltrate data
in Production
environment

Denial of
Services

Valid Account of Git
Repository (Personal
Token, SSH key,
Login password,
Browser Cookies)

Inject code to
IaC
configuration

Implant CI/CD
runner images

Privileged
Escalation and
compromise
other CI/CD
pipeline

Bypass Review Access to
Cloud
Metadata

(Monorepo)
Get credential
of different
folder’s
context

Clone Git
Repositories

Valid Account of
CI/CD Service
(Personal Token,
Login password,
Browser Cookie)

Inject code to
source code

Modify CI/CD
Configuration

Access to
Secret Manager
from CI/CD
kicked by
different
repository

Read
credentials file

Privileged
Escalation and
compromise
other CI/CD
pipeline

Valid Admin account
of Server hosting Git
Repository

Supply Chain
Compromise on
CI/CD

Inject code to
IaC
configuration

Modify Caches
of CI/CD

Get credential
from CI/CD
Admin
Console

Inject bad
dependency

Inject code to
source code

Implant CI/CD
runner images

SSH to CI/CD
pipelines

Inject bad
dependency

Modify the
configuration of
Production
environment

Deploy
modified
applications or
server images
to production
environment

https://github.com/rung/threat-matrix-cicd

5© 2023 Scribe Security LTD | Confidential |

Scribe’s evidence-driven approach to securing
the supply chain is essentially simple: Trust an
artifact only if it is associated with supporting
evidence, signed evidence which are defined as
digital attestations.

To implement this approach, Scribe supplies the
software tools needed to collect and manage
such evidence and evaluate the trustworthiness
of the artifact according to policies and
attestations (signed evidence).

Examples of policies supported by Scribe tools:

SCRIBE’S APPROACH TO SECURING
THE SUPPLY CHAIN

Security settings policies: assure that the security settings of the services used
through the build process were up to a predefined standard. Examples include use of
multi-factor authentication, tight permissions management, ephemeral builds,
avoiding or secure usage of “dangerous” capabilities.

Source\File\Module modification policies: assure that source code, configurations,
build script and IoC files have been modified according to a predefined standard, that
defines the identities, processes, steps and states that are allowed to conduct such
modifications.

Source\File\Module integrity policies: assure that source-code, files and modules are
identical to predetermined allowed versions.

Dependency Trust Policies: assure dependencies used are up to a predefined
standard (such as OSSF Scorecard, version-age, allow\banned list).

Vulnerabilities policies: assure that dependencies and other public-sourced (open or
closed) components’ vulnerabilities do not pose a high risk on the artifact’s security.

Software Development Lifecycle Policies: assure code was reviewed by designated
stakeholders, assure that review comments were resolved, assure testing and security
testing has been completed successfully.

Pipeline behavior policies: assure that the pipeline behaves as planned. For example,
require that an image is pushed as the output of the pipeline and not by some other
process.

6© 2023 Scribe Security LTD | Confidential |

Examples of evidence Scribe collects - Continuously and automated for every build:

In Addition, the Scribe tools support collecting
user-generated data and utilizing it as evidence.

Signed evidence is regarded as more trusted
than plain data. Scribe tools’ evidence are

signed data artifacts, which assures they are
tamper-proof and identifiable.

Fine grained SBOMs from the source SCM as well as final artifacts (containers)

Snapshots of the build environment

Snapshots of the source-repo

Security setting of the source-control and build environment

OS-level relevant events collected from the build machine (coming soon)

7© 2023 Scribe Security LTD | Confidential |

SCRIBE SOLUTION
ON THE ATTACKERS MAP

INITIAL ACCESS

The following Scribe policies can reduce
the risk:

● Secure settings policy assure that the
source-control and CI access security
settings are at a high standard:
Validate that commits have
multi-factor-authentication, limit
high-permissions to a minimal
user-group, manage access-keys, etc.

● When run continuously, the secure
setting policy will assure policies are
up-to-date, and that
security-settings-modifications do not
go untracked.

● Pipeline behavior policies can be used
to assure that access to accounts
follow known or predefined access
patterns. For example, to assure that
code modifications were done on the
developer workstation, and not by
directly accessing the source control
platform.

EXECUTION

Most execution vectors are based on
modifying some resource: a configuration,
a source-code file, a source-code project
file etc.

Scribe’s security settings policies, source
modification policies will assure that such
execution vector was not utilized:

● Security settings policies will assure
that only highly trusted personnel
have permissions to conduct sensitive
modifications.

● Source modification policies will
assure that only trusted personnel
and processes have changed
sensitive files. For high-risk build
pipelines, Scribe’s OS-level sensor
integration will support
higher-coverage policies, capable of
detecting source-modifications similar
to those exercised in the infamous
SolarWinds attack.

● Integrity and Dependency Trust
policies assure that dependencies and
other 3rd party software components
do not include or import known-bad or
suspected dependencies. This policy
can reduce the risk of an attacker
utilizing the “inject bad dependency”
attack vector.

ATTACK SCENARIOS HANDLED BY
SCRIBE SECURITY TECHNOLOGIES

If you got all the way down here,
you must be ready to get started! START FOR FREE

Have more questions? Contact Us

Schedule a DemoWant to see it in action?

Map blast-radius: which artifacts have been produced in a specific
pipeline, which artifacts contain contaminated packages etc.

Map vulnerability and malicious package ramifications: which artifacts
contains these packages.

Response: detect what was tampered with and where along the pipeline

AFTER ATTACK:

1. Attacker supplies his artifact instead of
the software producer.

2. Attacker tampers with the supplied
artifact (before delivery or use by
consumer).

3. Attacker modifies source code in
source-control repo

4. Attacker modifies dependencies
consumed by build pipeline

5. Attacker modifies build pipeline scripts

6. Attacker modifies build pipeline cache

7. Attacker modifies build machine and build
pipeline tooling

8. Attacker modifies source control settings (as a
step in gaining access or causing damage) -
modification of authentication method,
permissions and branch protection rules.

9. Attacker bypasses checks and tests (as a step
in inserting vulnerabilities)

10. Attacker who stole credentials (example: the
CircleCI attack) and bypasses the build pipeline
(even if he has access to private keys!)

https://scribesecurity.com/scribe-platform-lp/
https://scribesecurity.com/contact-us/
https://scribesecurity.com/contact-us/
https://scribesecurity.com/book-a-demo/
https://scribesecurity.com/book-a-demo/

