Scribe

From Continuous Assurance
to Agentic AppSec

How Scribe Security Protects Your
AI-Driven Software Factoxry

Additional information is available at https://scribesecurity.com/

© Copyright 2024-2025 Scribe Security. Proprietary and confidential.

cribe

From Continuous Assurance to Agentic
AppSec - Software Security for The Al Era

How Scribe Protects Your Al-Driven Software Factory

Abstract

Software supply chain risk has outpaced traditional application security. CI/CD pipelines,
third-party components, and Al-generated code now change faster than AppSec teams can
inspect, review, and remediate. Scribe Security addresses this gap with continuous,
evidence-based assurance across the software development lifecycle (SDLC). The platform
automates the collection, signing, and verification of SDLC evidence of all types; builds a
knowledge graph that links artifacts, identities, and actions; enforces policy-as-code guardrails;
and now, in the Al era, orchestrates a network of intelligent agents to analyze risk, prioritize
fixes, and remediate at scale. This paper explains the market problem, Scribe’s data and

© Copyright 2024-2025 Scribe Security. Proprietary and confidential.

cribe

architecture advantage, its evolution to an Al-centric model, and practical outcomes for CISOs,
product security leaders, and DevSecOps practitioners.

1) Market Reality: Risk Scales Faster Than Security

Modern development velocity breaks old security models. Every day, organizations ship
code from dozens of repositories through multiple pipelines, into registries and clusters across
clouds. The attack surface now includes source control, build scripts, container bases,
deployment manifests, signing keys, and the people and automations touching them.

Three shifts make the gap unmanageable by hand:

1. Exploding component reuse: Open source and third-party services dominate modern
apps; one dependency can expose thousands of builds.

2. Automated pipelines as targets: CI/CD systems are now prime intrusion points;
tampering here compromises everything downstream.

3. Al-generated code at scale: LLMs accelerate output, but also accelerate the volume of
insecure code, misconfigurations, and leaked secrets.

Compliance adds pressure. Governments and enterprises now expect verifiable proof:
SBOMs, provenance, signed attestations, and process controls aligned to frameworks like
SLSA, NIST SSDF, DORA, FedRAMP, CRA, FDA, PCI. Point-in-time scans and spreadsheets
cannot satisfy these demands reliably.

Conclusion: The industry must move from “detect and patch later” to continuous assurance:
capture evidence as software is created, prove integrity and policy conformance before
promotion, and remediate quickly with minimal human toil.

© Copyright 2024-2025 Scribe Security. Proprietary and confidential.

cribe

2) Scribe’s Core Approach: Evidence, Integrity, Policy,
and Speed

Scribe’s platform (ScribeHub) operationalizes continuous assurance across the SDLC:

e Automated evidence collection
Scribe collectors integrate with SCMs, build systems, registries, and clusters to gather
multi-stage SBOMSs, scanner results, pipeline posture, and process context. Only
evidence - not source code - is collected.

e Signing, attestations, and provenance
Evidence is signed (enterprise PKI or Sigstore), transformed into machine-readable
attestations (including in-toto/SLSA provenance), and validated at each stage: commit,
build, test, package, deploy.

e Tamper-proof integrity graph
Encrypted evidence is correlated into a knowledge graph - a signed, searchable audit
trail that links artifacts to identities, tools, and actions. This provides explainable
line-of-sight from code to cloud.

e Policy-as-code and guardrails
Policies enforce “what good looks like” (e.g., verified provenance, approved bases,
SBOM present, scanners completed, zero critical vulns, signed checkpoints). Violations
can block promotion or trigger workflows.

e Runtime admission control and trust propagation
Integrity and policy decisions propagate to deployment - admission controllers verify
signatures and provenance, so only compliant artifacts run.

e Frictionless for developers
Checks run “invisibly” in existing pipelines. Developers see clear, contextual feedback
and can auto-open tickets or apply safe fixes without leaving their tools.

This foundation made Scribe a strong continuous assurance platform. The next step, and the
focus of this paper, is how Scribe evolved to make Al the engine behind prioritization,
explainability, and remediation.

© Copyright 2024-2025 Scribe Security. Proprietary and confidential.

cribe

3) The Al-Era Shift: From Al-Assisted to Al-Centric

Many vendors bolt Al onto dashboards. Scribe took a different path: put Al at the center by
giving it what most systems lack - reliable, signed, contextual data.

3.1 A Data Advantage Al Can Trust

Al is only as strong as the signals it sees. Scribe generates and gathers unique, high-fidelity
signals from the SDLC:

e Hashes, signatures, and provenance for every artifact and stage.

SBOMs and AI-BOMs that describe what software and models are actually used.

Scanner outputs (SAST/SCA/DAST/secret, container, posture) normalized and signed.

Pipeline and infra posture (who ran what, in which environment, with which configs).

Human and machine identities, approvals, and policy decisions.

These signals flow into the Software Knowledge Graph, giving Al the context to answer “What
is the root cause?”, “What is the blast radius?”, “Is this risk exploitable here?”, “What SDLC
policy was violated and by who?”, and “Can we apply a safe, verified remediation now?”

3.2 Agentic Architecture: A Network of Specialists

ScribeAl orchestrates purpose-built networks of agents that collaborate based on the
knowledge graph:

e Heyman — AppSec copilot
Conversational interface that understands risk in context, explains root cause, triages
findings, opens tickets, and coordinates workflows with humans in the loop.

e Remus — Auto-remediation agentic workflow
Generates safe patches for code and configurations, validates changes, and proposes
PRs/MRs; updates attestations and risk posture automatically.

e Docktor — Docker fixer
Analyzes Dockerfiles for vulnerabilities and inefficiencies, suggests secure base
images, reduces image size, re-evaluates the new build, and produces a report.

e Compy - Compliance agentic workflow
Continuously evaluates evidence against standards (SLSA/SSDF/SAMM, FedRAMP,

© Copyright 2024-2025 Scribe Security. Proprietary and confidential.

cribe

DORA, PCI, CRA), highlights gaps, and drafts audit-ready artifacts.

e Eva - Evidence agentic workflow
Instruments sensors and gates across the SDLC; ensures the right evidence is captured
and signed at the right time.

These agents work from a single source of truth- the signed knowledge graph - so decisions are
explainable and repeatable.

4) What Changes for Security and Engineering Leaders

4.1 From Alert Overload to Actionable Priorities

Scribe’s Al considers exploitability (EPSS), reachability, asset value, environment posture, and
tampering signals (provenance, signatures) to promote the small set of issues that matter
now. Heyman explains why in plain language; Remus can propose fixes immediately and
submit PRs to your Git.

4.2 Remediation at Developer Speed

Auto-generated PRs/MRs, verified by policy and signed checkpoints, move risk down without
detours. Remus and Docktor accelerate recurring fixes (dependency upgrades, base hardening,
misconfig corrections) while respecting guardrails.

4.3 Compliance Becomes Continuous

Compy maps evidence to frameworks as work happens, not at quarter-end. Attestations and
reports are always current, and based on hard evidence from the pipelines, cutting audit prep
from weeks to hours and eliminating spreadsheet drift.

4.4 Zero-Trust Starts at Commit

By enforcing signed provenance and policy at each stage, Scribe prevents untrusted artifacts
from ever reaching deployment. Admission control consumes the same evidence, so “what you
built” equals “what you run.”

© Copyright 2024-2025 Scribe Security. Proprietary and confidential.

cribe

5) Architecture Overview

1.

Collectors & Integrations

Connect to SCMs (GitHub, GitLab, Bitbucket, Azure DevOps), CI/CD (Actions, GitLab
Cl, Jenkins, CircleCl, Argo, etc.), registries, and clusters. Over 180 integrations
normalize evidence.

Secure Evidence Pipeline
Evidence (not code) is encrypted in transit, signed, and stored in a tamper-proof
repository. Each item is traceable to identities, tools, and times.

Knowledge Graph
A graph database correlates artifacts, commits, SBOM entries, policies, scanner
findings, approvals, and runtime objects. This is the substrate for explainable Al.

Policy-as-Code
Customers express controls as code: required attestations, approved bases, vuln
budgets, segregation of duties, release criteria. Policies gate pipelines and admission.

Agent Orchestrator (ScribeAl)
Routes tasks (triage, analysis, fix generation, compliance mapping) to the right agent;
preserves auditability; aligns agent actions with policy and human approvals.

User Experience

o ScribeHub dashboard for unified visibility, lineage, compliance, and KPIs. Many
of the Al-agentic workflows are managed and consumed through ScribeHub.

o Conversational UX (Heyman) for natural-language queries and actions: “Show
exploitable vulns in payments service,” “Open fix tickets for criticals with
reachability,” “Regenerate provenance for v1.4 builds.”

© Copyright 2024-2025 Scribe Security. Proprietary and confidential.

cribe

6) Use Cases and Outcomes

6.1 Secure Build Provenance & Anti-Tampering

Problem: ClI scripts, keys, and bases drift; attackers target build systems.

Scribe: Enforce signed provenance and in-toto attestations; verify signatures at each step;
block unsigned or tampered artifacts.

Outcome: Only trusted artifacts progress and deploy; blast radius of key or script compromise
is drastically reduced.

6.2 Third-Party and Al-Generated Code Transparency

Problem: Outsourced components and Al outputs ship quickly but may hide misconfigurations,
secrets, or vulnerable code.

Scribe: Generate SBOMs/AlI-BOMs automatically, map provenance, collect scanners' results
from SARIF files or APIs, and enforce policy gates; Remus proposes fixes as PRs.

Outcome: Faster acceptance with confidence; consistent standards across internal and
external code.

6.3 Continuous Compliance (SLSA, SSDF, DORA, FedRAMP, CRA)

Problem: Evidence collection is manual; audits are time-consuming and error-prone.

Scribe: Compy maps signed evidence to control catalogs; creates audit-ready reports per
build; maintains an immutable trail.

Outcome: Reduce audit prep from weeks to hours; demonstrable “secure-by-design” posture.

6.4 Incident Response & Exposure Analysis

Problem: When a zero-day hits, teams can’t quickly answer “What'’s affected?”

Scribe: Query the knowledge graph to locate vulnerable versions, builds, deployments, and
dependents; Remus and Docktor propose remediations.

Outcome: Confident, surgical response; minimized downtime and risk.

6.5 Admission Control and Runtime Trust

Problem: Deployments accept artifacts lacking evidence; drift sneaks in between build and run.
Scribe: Admission controllers verify signatures, provenance, and policy compliance at
deployment time.

Outcome: Run only what was verified; developers keep shipping, security keeps control.

© Copyright 2024-2025 Scribe Security. Proprietary and confidential.

cribe

7) Scribe vs. DevOps Platforms

DevOps suites (e.g., GitHub, GitLab) provide excellent SCM/CI and integrate scanners, but they
are not purpose-built for end-to-end, attestation-driven supply chain assurance:

e No unified, cross-tool integrity graph linking code, artifacts, policies, and runtime.
e Limited admission enforcement based on evidence from outside their ecosystem.
e Compliance reporting is often repo-scoped and manual to aggregate.

e Remediation is typically developer-driven, not agent-driven, with auditability.

Scribe complements these platforms by discovering assets across heterogeneous estates,
enforcing policy-as-code, generating and validating signed evidence, and driving Al-powered
remediation - all with a tamper-proof audit trail, based on signed, machine-readable
attestations.

8) Data Protection and Privacy
e Evidence-only: Scribe collects metadata and results; not source code.

e Encryption & signing: Data is encrypted in transit and at rest; items are signed with
enterprise PKI or Sigstore.

e Fine-grained access: Least-privilege controls; sensitive attestations shared on a
need-to-know basis.

e Auditability: Every agent action, policy decision, and human approval is recorded,
supporting internal and external audits.

COMP .

C COMPLIAT'C. A~

© Copyright 2024-2025 Scribe Security. Proprietary and confidential.

cribe

9) KPIs and Business Impact

Security leaders and platform teams typically measure success along these lines:

Vulnerability noise reduction: 40—70% drop in non-actionable alerts via contextual
triage (reachability, EPSS, provenance).

Remediation velocity: PR-based auto-fixes reduce MTTR from weeks to days or hours
for recurring findings.

Compliance effort: Audit prep time reduced by >60% via continuously generated,
signed evidence and reports.

Release stability: Fewer late-stage blocks due to earlier, automated gates; fewer
hotfixes post-release.

Incident response: Accelerated impact analysis and targeted remediation through
querying the attestation lake and knowledge graph.

Developer experience: Less manual security toil; fixes arrive as clear PRs with
rationale; predictable release cadence.

10) Differentiation Summary

Evidence-first architecture: Signed, verifiable attestations across the SDLC, not just
scan results.

Knowledge graph: A tamper-proof, explainable lineage map from code to cloud; the
substrate Al needs.

Agentic remediation: Heyman, Remus, Docktor, Compy, Eva, - specialized virtual
teams of agents that act, not just advise.

Heterogeneous by design: Works across GitHub/GitLab/Bitbucket/Azure DevOps;
supports diverse CI/CD and cloud stacks.

Developer-friendly: Invisible checks, clear feedback, policy-aligned PRs/MRs; velocity
preserved.

Compliance on autopilot: Out of the box policy bundles that manifest known regulation
and best frameworks. Evidence collected as work happens; reports always current.

© Copyright 2024-2025 Scribe Security. Proprietary and confidential.

cribe

Everything is signed and archived.

Trust at the Speed of Software

Security can no longer be a late gate or a quarterly audit. In the Al era, when code and risk
scale together, organizations need continuous, evidence-backed assurance and agentic
remediation that keeps pace with development.

Scribe Security has evolved from a powerful attestation platform to an Al-centric assurance
and remediation system. By combining a signed knowledge graph with a network of intelligent
agents, Scribe enables teams to decide faster, fix sooner, prove continuously, and ship
with confidence, whether code is written by humans, generated by Al, or assembled from
third-party components.

If you’re ready to move from chasing vulnerabilities to engineering trust into every release,
Scribe is built for you.

Next Steps
e See ScribeHub and Heyman in action with a targeted demo.
e Pick one service and one compliance target; measure results in 30 days.

e Expand policies and agentic workflows; turn continuous assurance and secure-by-design
into your default.

Contact: info@scribesecurity.com | scribesecurity.com

© Copyright 2024-2025 Scribe Security. Proprietary and confidential.

http://scribesecurity.com

	From Continuous Assurance to Agentic AppSec
	From Continuous Assurance to Agentic AppSec - Software Security for The AI Era
	How Scribe Protects Your AI-Driven Software Factory
	Abstract

	1) Market Reality: Risk Scales Faster Than Security
	2) Scribe’s Core Approach: Evidence, Integrity, Policy, and Speed
	
	3) The AI-Era Shift: From AI-Assisted to AI-Centric
	3.1 A Data Advantage AI Can Trust
	3.2 Agentic Architecture: A Network of Specialists

	4) What Changes for Security and Engineering Leaders
	4.1 From Alert Overload to Actionable Priorities
	4.2 Remediation at Developer Speed
	4.3 Compliance Becomes Continuous
	4.4 Zero-Trust Starts at Commit

	
	5) Architecture Overview
	6) Use Cases and Outcomes
	6.1 Secure Build Provenance & Anti-Tampering
	6.2 Third-Party and AI-Generated Code Transparency
	6.3 Continuous Compliance (SLSA, SSDF, DORA, FedRAMP, CRA)
	6.4 Incident Response & Exposure Analysis
	6.5 Admission Control and Runtime Trust

	
	7) Scribe vs. DevOps Platforms
	8) Data Protection and Privacy
	 9) KPIs and Business Impact
	10) Differentiation Summary
	Trust at the Speed of Software

